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Abstract

Computer simulations of entanglement–condensed systems are performed to study the interaction potential among local-knots (LKs),

which are proposed by Iwata and Edwards as basic units of entanglement. By performing hypothetical element-exchange reactions between

the system and an external element-bath, chemical potential DmðxÞ of chain-elements, measured from its topological equilibrium value, is

computed numerically as a function of condensation ratio x of LKs. DmðxÞ is transformed into free energy DFðxÞ of the system, which takes a

minimum in the topological equilibrium state ðx ¼ 1Þ and increases rapidly with increasing x. It is argued that DFðxÞ comes mainly from the

topological repulsive potentials among LKs, because DFðxÞ computed by the simulation is much larger than that predicted by the slip-link

model in which the repulsive potential is neglected. To see farther evidences for the repulsive potential among LKs, average length �LaðxÞ of

each chain a, a ¼ 1,2,…, is computed for various x, and it is found that �LaðxÞ changes inversely proportional to x and roughly proportional to

ma, the number of LKs trapped in chain a; these results are naturally explained by the existence of the repulsive potential among LKs. By

tracing motion of LKs along chains using the local Gauss integral introduced in the previous work, it is found that (1) there are many kinds of

LKs which have different volumes in the chains according to their complexity but (2) ca. 70 vol% of LKs are the simplest LK2,1 which is

composed of two stems and has the Gauss integral equal to ^1. From these results, it is concluded that the validity of LK model is sufficiently

proved by the present work. DmðxÞ obtained here is applied to crystalline polymers in the next paper (Polymer, 2002;43: (the following paper

in this issue)). q 2002 Published by Elsevier Science Ltd.
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1. Introduction

The purpose of this work is to study the nature of

interaction potentials among local-knots (LKs), which are

proposed by Iwata and Edwards [1,2] as elementary units of

entanglement. In this model (LK model), entangled polymer

chains are represented as shown in Fig. 1, in which LKs are

formed among stems (local parts of chains) of length ca. Ne,

the average chain length per entanglement. When a pair of

stems forms a LK, its Gauss integral takes near integer

number ^1;^2;…; keeping its value until the LK moves to

an end of the chains and unfastened. In permanently

entangled polymers (such as cross-linked polymers or

amorphous domains in stacking lamellar crystals), LKs

have essentially an infinite lifetime. It is argued that LKs

move like one-dimensional Brownian particles along

chains, interacting repulsively with one another and, in a

long-time scale, they take part in a corrective motion which

is assigned to the reptation motion [3]. LK model is

consistent with the reptation/tube model [4–6] in their

dynamic behavior but it has many novel features, such as the

topological repulsive potential among LKs [1–3], existence

of which was assumed from the fact that LKs cannot pass

through one another along chains. These behaviors of LKs

are confirmed by computer simulations in our previous work

[4,5]. To see further evidences for the repulsive interaction

among LKs, the previous work is extended here to study the

motion of LKs more in detail and to compute the free energy

change due to condensation of LKs.

Another purpose of this work is to provide necessary data

to the topological theory of crystalline polymers presented

in the next paper [6]. In this theory, it is assumed that in the

process of crystallization, entanglements existing in the

original melt or solution are condensed in amorphous

domains and determine the structure of crystals formed.

Several people have already discussed this problem.

Manderkern [7], for example, argued that crystallinity wc

is determined by the amount of entanglements trapped in the

amorphous domains. Strobl [8–10] and Mansfield [11,12]
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considered that the reversible surface melting of lamellae

is explained by the thermodynamic equilibrium between

the lamellae and entanglement–condensed amorphous

domains. In both the phenomena, the basic assumption is

that the amount of crystal domains in semi-crystalline

polymers is determined by the free energy of entanglement

trapped in the amorphous domains. Their arguments are,

however, mostly qualitative and insufficient. In studying the

role of entanglement in crystalline polymers, the main

difficulty is that the usual models of entanglement, such as

the reptation/tube model [13–16] or slip-link (SL) model

[17], are insufficient to apply to this problem. Although

these models are applied successfully to viscoelastic

properties of polymers [14], they are insufficient to describe

entanglement–condensed systems in which the topological

repulsive potentials should play a central role. In this work,

chemical potential mðxÞ of chain-elements is computed

numerically as a function of condensation ratio x of

entanglement and its origin is discussed in terms of the

topological repulsive potentials among LKs. mðxÞ given

here is applied to crystalline polymers in the next paper [6].

2. Chemical potential of chain-elements

The chemical potential of chain-elements introduced

here is an unusual but useful concept in studying the role of

entanglement in crystalline polymers, which is discussed in

the next paper [6]. To show this, we consider a bead-and-

spring-model chain of which ends are attached to walls as

shown in Fig. 2. The chain is composed of L springs of force

constant k. For simplicity, we first neglect entanglement and

the excluded volume among the beads. When the end-to-

end-distance is equal to l, the free energy of the chain is

given by

bFðL; lÞ ¼ constant þ
3

2
ln L þ

3l2

2La2
; ð1Þ

where a2 ¼ 3kBT=k is the mean-square length of the springs

and b has the usual meaning, b ¼ 1=kBT: This is a

simplified model of an amorphous domain in stacking

lamellar crystals; the walls represent surfaces of lamellae

and the chain, a tie molecule in the amorphous domain.

Chemical potential mðL; lÞ of chain-elements is given under

this condition by

bmðL; lÞ ¼ b½FðL; lÞ2 FðL 2 1; lÞ�

¼ ð3=2LÞð1 2 l2=La2Þ

for L q 1:

ð2Þ

Now, we show that mðL; lÞ is computed by a Monte-Carlo

simulation of an imaginary element-exchange reaction

between the chain and an external element-bath as follows.

When bead i is removed form the chain as shown in Fig. 3,

change of the energy due to the reaction is equal to

DE ¼ 2kb·b0; where b and b0 are bond vectors connecting

element i. The bond-formation energy associated with this

reaction is assumed to be zero. Addition or removal of

elements are done with the following probabilities

pa ¼ p0 for addition

pr ¼ p0 expðb DEÞ for removal
ð3Þ

where p 0 is a positive constant, which makes pa and pr

always less than unity. By Eq. (3), the detailed Boltzman’s

balance holds always in the reaction. When elements are

exchanged between the chain and an external element-bath

of chemical potential m, extra work m needs to take an

element from the bath; in this case, addition should be done

with probability p0
a ¼ pa expð2bmÞ: When the equilibrium

between the chain and the element-bath is established, the

number of additions and removals of the chain elements

should be the same or kp0
al should be equal to kp0

rl; where k l
is an average over the equilibrium distribution of the chain

with l fixed. Thus we find

bm ¼ ln½kprl=kpal�; ð4Þ

bm ¼ 2lnkexpðbDEÞl: ð5Þ

Fig. 1. Local-knot model: entanglement is composed of local-knots which

are formed between local chains of length ca. Ne.

Fig. 2. A linear chain fixed to two walls.

Fig. 3. Imaginary add/remove motions of chain-elements.
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Inserting DE ¼ 2kb·b0 into Eq. (5) and taking the average

over the equilibrium distribution of the chain with l fixed,

Eq. (5) gives Eq. (2) exactly. Thus, mðL; lÞ can be computed

by performing the imaginary element-exchange reaction

and using Eq. (4).

Now let us show that Eqs. (4) and (5) hold generally in

any system composed of identical repeating units. Particu-

larly, we consider a catena network (permanently entangled

cyclic polymer chains), in which entanglement states among

the chains are conserved and excluded volume potentials act

among the chain-elements. Generally, let R be a set of given

restrictive conditions such as the fixed end-to-end-distance l

or given topological states of the system. R includes

macroscopic conditions such as volume V, temperature T

and pressure P of the system. Let En{n} and En21{n 2 1}

be energies of systems composed of n and n 2 1 elements,

respectively, where {n} and {n 2 1} represent set of

coordinates of the all elements in the system. The chemical

potential of the system is given by

mðn;RÞ ¼ Fðn;RÞ2 Fðn 2 1;RÞ; ð6Þ

where Fðn;RÞ and Fðn 2 1;RÞ are the free energies of the

system defined by

bFðn;RÞ ¼ 2ln
ð
R

expð2bEn{n}Þd{n}; etc: ð7Þ

The integration should be performed over the all space

under restriction R. For simplicity, the momentum space is

neglected. Now, elements are exchanged between an

external bath of chemical potential m with the add/remove

probability given by Eq. (3) in which DE is given by

DE{n} ¼ En{n} 2 En21{n 2 1}: ð8Þ

By the same reason as discussed above, m is given by Eqs.

(4) and (5), where average k l should be performed over

equilibrium distribution

Pe{n;R} ¼ expð2bEn{n}Þ=
ð
R

expð2bEn{n}Þd{n}: ð9Þ

We thus find

kexpðbDEÞl ¼ V21
ð
R

expðbDEn{n}ÞPe{n;R}d{n}

¼
ð
R

expð2bEn21{n 2 1}Þd{n 2 1}=

ð
R

expð2bEn{n}Þd{n}; ð10Þ

where V is the volume of the system. Insertion of this

equation into rhs of Eq. (5) gives Eq. (6). Thus, chemical

potential mðn;RÞ of any system can be computed using Eq.

(4) by performing imaginary element-exchange reactions

with add/remove probabilities satisfying given restrictive

condition R and the detailed Boltzman’s balance.

By the premise of the imaginary element-exchange

reaction considered here, the bond-formation energy is not

included in mðn;RÞ: It is therefore equal to the work

necessary for pulling a chain by one element out from the

system or it represents a ‘tensile force’ acting along the

chain under the restrictive condition R. This tensile force is

different from that assumed in the tube model [14–16].

3. Model of simulations

3.1. Bond-fluctuation (BF) model

We use here BF model which is often used in the

simulations of entangled polymers [18–20]. In this model,

polymer chains are restricted on a simple-cubic lattice and

chain-elements are represented by unit cubes (consisting of

eight lattice points) connected by bonds of length b, 2 #

b #
ffiffiffi
10

p
: There are in total 108 bonds satisfying these

conditions and they are classified into six basic types:

(2,0,0), (2,1,0), (2,1,1), (2,2,1), (3,0,0) and (3,1,0). The

mutual avoiding condition (excluded volume condition)

among elements is assumed. Elementary processes of the

Brownian motion are random moves of elements by unit

length in ^x, ^y or ^z direction; this motion is hereafter

called ‘local motions’. We have later found that the original

model proposed by Paul et al. [18] contains vital defects

called X-traps, which gives errors in the long-time behavior

of the system, and proposed a modified BF model which is

free from X-traps [19]. Details of the model and X-traps

should be referred to Ref. [19]. In this work, the corrected

BF model is used.

3.2. Element-exchange motions (add/remove motion)

Beside with the local motions considered in the original

BF model, we introduce here newly add/remove motions

of elements shown in Fig. 3. When an element chosen

randomly, say i, is removed, new bond bði 2 1; i þ 1Þ

is formed between element i 2 1 and i þ 1; new bond

bði 2 1; i þ 1Þ should satisfy the restrictive conditions for

bonds (i.e. it should be one of the 108 bonds permitted for

BF model), otherwise the removal motion is rejected. In

addition motion, a bond, say j, is chosen randomly and new

element j 0 is inserted between element j 2 1 and j; as j 0 is

added, two new bond bðj 2 1; j 0Þ and bðj 0; jÞ are formed,

which should satisfy the restrictive conditions for bonds; in

the addition motions, there are many possible positions for

addition to each bond, to one of which chosen randomly a

new element is added, if the position is not occupied by

other elements; unless all of these conditions satisfied, the

motion is rejected. These add/remove motions are defined

for intermediate elements of the chains. For linear chains,

terminal elements are also added and removed but their add/

remove motions should be modified slightly; however, its

precise description is omitted here, since the modifications

are straightforward and the most calculations are done

for cyclic chains. In the add/remove motions, further

K. Iwata et al. / Polymer 43 (2002) 6595–6607 6597



restrictions must be introduced to inhibit crossing among

chains. There are the following two mechanisms for

crossing chains by the add/remove motions.

X-mechanism: Pairs of bonds of (2,2,1) and (3,1,0)-type

form what we call X-traps as shown in Fig. 4b [19]. There

are in total 48 X-traps formed by (2,2,1)-type pairs, say

(2,2,1) and (22,2,1), and 24 X-traps formed by (3,1,0)-type

pairs, say (3,1,0) and (1, 2 3,0). The local motions never

form these X-traps. They are formed when new bonds are

formed in the add/remove motions. Suppose that element i

of chain a, which is initially in the conformation shown in

Fig. 4a, is removed to form a X-trap between new bond

bði 2 1; i þ 1Þ and bond j of chain b (Fig. 4b), and then a

new element is added to bði 2 1; i þ 1Þ as shown in Fig. 4c,

then, chain a passes through chain b. These are two-step

passing processes named ‘X-mechanism’.

D-mechanism: In BF model, what is named D-confor-

mations appear, in which three bonds of (2,2,1) and (3,1,0)-

type form a triangle and another bond of (2,2,1)-type passes

through it as shown in Fig. 5; for example, bond (2,2,1),

(21, 2 2,2) and (21,0, 2 3) form triangle A1A2A3 and

bond (2, 2 2, 2 1) passes through it. There are in total 48

such conformations. Suppose that bond (2,2,1) and

(21, 2 2,2) are a part of chain a and bond (2, 2 2, 2 1),

a part of chain b; when element A2 is removed and new

bond (21,0, 2 3) is formed, then, chain a passes

through chain b. This is one step passing process named

‘D-mechanism’.

By inhibiting the X- and D-mechanisms in the add/re-

move motions, chains never pass through one another. This

is confirmed by calculating Gauss integrals among cyclic

chains. In this work, the following four types of the

add/remove motions are considered: (a) intra-chain

element-exchange motion (sliding motion), (b) inter-chain

element-exchange motion, (c) element-exchange reactions

between the system and an external bath and (d)

macroscopic deformation of the system.

(a) Element-exchange motion within each chain (sliding

motion ): An element of a chain, say i, is removed and

added to a bond, say j, of the same chain. This motion

looks like a sliding motion of the part of the chain

between i and j by one bond along the contour of the

chain. In the sliding motion, chain lengths are conserved.

The sliding motions equilibrate the system rapidly, so that

they are useful to get an equilibrium ensemble with chain-

lengths fixed.

(b) Element-exchange motion among different chains in

the system: Exchange is done among the all chains in the

system. In this motion, chain lengths are not conserved but

the total number of elements is fixed.

(c) Element-exchange motion between the system and an

external element-bath: Elements are exchanged between the

system and an external bath of chemical potential of m. A

same number of trials of addition and removal are done per

unit time. Factor expð2bmÞ is multiplied to addition

probability pa when m $ 0; and factor expðbmÞ; to removal

probability pr when m , 0: In this motion, chain lengths and

the total number of elements of the system are fluctuating

around their average values. This motion is used to compute

chemical potential of elements using Eq. (4).

(d) Macroscopic deformation of the system: To deform

the macroscopic shape of the system in BF model, planes

are inserted or removed from the simple-cubic lattice on

which the chains are restricted. Insertion or removal of plane

S perpendicular to, say, the x axis of the lattice is done as

follows. First, the all bonds passing through or locating on S

are moved so that they are all vertical to S. Before removing

plane S, the all bond vectors passing through it must be

either of (^3,0,0), (^3, ^ 1,0) or (^3,0, ^ 1), which

change into (^2,0,0), (^2, ^ 1,0) or (^2,0, ^ 1), respect-

ively, after removal of plane S. Before insertion of

plane S, the all bonds passing through it are moved so

that they are either of (^2,0,0), (^2, ^ 1,0) or

(^2,0, ^ 1), which change into (^3,0,0), (^3, ^ 1,0)

or (^3,0, ^ 1), respectively, after insertion of S. These

processes are done by the local motions so that the

topological state of the system is conserved strictly.

Removals and insertions of planes are repeated until the

system deforms to a desired form. Just after finishing

the deformation, the system is far from its equilibrium

state; equilibration of the system is done by the element-

exchange motions among the chains or between the system

and an external element-bath according to the problem

considered.

The add/remove motions introduced here satisfy the

detailed Boltzman’s balance. In fact, energy change DE

due to an add/remove motion becomes infinite (or

expð2bDEÞ ¼ 0), when newly formed bonds violate the

required condition for bonds or an inserted element overlaps

with other elements, thus the motion does not occur. When

the motion satisfies the required conditions, DE is equal to

zero (or expð2bDEÞ ¼ 1), since the all permitted confor-

mations have the same energy in BF model; thus the motion

Fig. 4. X-mechanism for passing through chains (two-steps process).

Fig. 5. D-mechanism of passing through chains (one-step process).

K. Iwata et al. / Polymer 43 (2002) 6595–66076598



is always permitted. This is consistent with the definition of

add/remove probabilities, pa and pr, given by Eq. (3). Since

both the local and add/remove motion satisfy the detailed

Boltzman’s balance, they should give the same equilibrium

states. To confirm this, two kinds of simulations, one by

the local motions alone and the other by the add/remove

motions (the intra-chain element-exchange motions) alone,

are performed for linear chains and it is found that

equilibrium quantities, such as radius of gyration kR2
gl;

mean-square end-to-end distance kL2l and the bond type

distribution, agree well in the two simulations within

the statistical error. As an example, the bond type

distributions found in the two simulations are shown in

Table 1. Thus, both of the local and add/remove

motions give the same equilibrium states. The two

motions, however, have mutually complementary char-

acters. The local motions change local conformations

rapidly while the add/remove motions change long-

range conformations of the chains efficiently. To compen-

sate the defects of the two motions, they are mixed with an

equal ratio in the simulations; i.e. the chains are moved by

the local motions for 1 ut (1 unit time ¼ 1 Monte-Carlo

cycle) and then by the add/remove motions for 1 ut.

Hereafter, 1 ut means 1 ut of the local motions plus 1 ut of

the add/remove motions.

4. Calculation of the chemical potential and free energy

in entanglement–condensed systems

4.1. Topological equilibrium state

As a standard state of entanglement, we consider the

‘topological equilibrium state’, which is defined as the

equilibrium state of equivalent phantom chains [21].

Difference between real and phantom chains is that the

former cannot pass through one another, while the latter can.

For linear chains, there is no difference between the

equilibrium states of real and phantom chains, because

entanglement states (or LKs) are changing in the both

systems. On the other hand, in the catena networks and

network polymers, entanglement stats are kept in real chains

while they are not in phantom chains. Since entanglement

states of these systems are determined when they are

formed, we must consider how they are prepared. Ideally,

network polymers are in the topological equilibrium state

just after cured; i.e. if cross-linking reaction proceeds so

slowly that the equilibrium between trapped and free chains

is sustained during the reaction, the trapped entanglements

must be in the topological equilibrium state [21]. Actually,

the reaction proceeds with a considerable rate so that the

trapped entanglements will be more or less deviate from

their topological equilibrium state; we should therefore

ask how far their just-cured states deviate from their

topological equilibrium. In stacking lamellar crystals

discussed in the next paper [6], we need to know the

free energy difference between the equilibrium melt and

entanglement–condensed amorphous domains. In these

problems, the topological equilibrium state is the only

possible standard state for trapped entanglements. In the

present works, initial conformations of the system are

chosen from the equilibrium ensemble of phantom cyclic

chains so that they have typical conformation in the

topological equilibrium state.

4.2. Simulation systems

The system is composed of 32 cyclic chains (BF model)

restricted on a simple-cubic-lattice. The periodical bound-

ary condition is assumed and the volume fraction of the

chains is fixed to f ¼ 0:5 throughout this work. Initially, the

chains have equal length 512 and the volume of the system

is equal to 64 £ 64 £ 64. The chains are initially packed

randomly neglecting the excluded volume condition and

then equilibrated by the local and add/remove motion,

permitting partial overlap among the elements. In the

equilibration process, overlapping probability Poverlap is

changed very slowly to zero and, in the sampling process of

initial conformations, Poverlap is changed periodically

between zero and a small positive number, 0.05. In these

processes, the chains pass through one another so that

the system approaches to the topological equilibrium

state. The initial equilibration process is continued until

Rg and the distribution of bond length reaches their

expected equilibrium values. Three independent initial

conformations are chosen from the equilibrium ensemble

and X- and D-conformations are removed from them by

the method described in the previous paper [19]. Samples

made from these initial conformations are designated as

S1, S2 and S3.

4.3. Calculation of chemical potentials in closed systems

The system is then deformed isotropically or uniaxially

by the method described above. Details of deformation are

shown in Table 2. Uniaxial deformation is a model of the

lamellar thickening process in stacking lamellar crystals,

discussed in the next paper [6]. Isotropic deformation is

considered for reference as the simplest case. After

Table 1

Bond type distribution in the local and add/remove motion (in the

topological equilibrium state)

Bond type Local motion Add/remove motion

(2,0,0) 0.0911 0.0913

(2,1,0) 0.2727 0.2733

(2,1,1) 0.2237 0.2243

(2,2,1) 0.2176 0.2167

(3,0,0) 0.0376 0.0375

(3,1,0) 0.1572 0.1568
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deformation, the system is equilibrated for a sufficiently

long time (1–10 Mut) by the local motion þ add/remove

motions. Since elements are added to and removed from the

chains randomly, chain-lengths fluctuate but the volume

fraction of elements is kept always at f ¼ 0:5: In these

processes, the chains cannot pass through one another so

that entanglements (LKs) are conserved. Condensation ratio

x of LKs is given by x ¼ V0=V ; where V0 is the initial

volume of the system. To confirm for the equilibrium

states to be established well in each deformation step,

the system is deformed step-by-step to the maximum

deformation state (forward deformation), in each step,

the system being well equilibrated and then, it is

returned to the initial state in the similar manner (return

deformation). The simulation is done for initial

conformation S1 and S2. To compute chemical potential

mðxÞ using Eq. (4), addition and removal probability,

kpal ¼ kNal=N and kprl ¼ kNrl=N; are computed, where

N is the total number of the elements, Nr the total

number of successful removal, and Na is the total

number of successful additions of elements per unit

time; k l represents average over the samples. Chemical

potential mðxÞ is thus computed with the use of Eq. (4)

as functions of x for uniaxial and isotropic deformation.

In the most problems, it is sufficient to know the

difference of mðxÞ from its topological equilibrium

value, DmðxÞ ; mðxÞ2 mð1Þ: DmðxÞ computed for initial

conformation S1 and S2 in the forward and reverse

deformation are separately shown in Fig. 6. As seen

from the figure, the deviations between the forward and

reverse deformation are quit small; this indicates that

the system is well equilibrated in each deformation step.

The deviations between S1 and S2 are also small and

may be neglected. The average of kpal; kprl and bDm for

the forward and reverse deformation of sample S1 and

the forward deformation of S2 are given in Table 2.

bDmðxÞ obtained here is fitted numerically by

bDmðxÞ

¼
0:03963 2 0:0369xþ 0:00199x2 2 0:00472x3 ðuniaxialÞ;

0:02876 2 0:0160x2 0:0122x2 2 0:00056x3 ðisotropicÞ

(
:

ð11Þ

bDmðxÞ computed by Eq. (11) is shown by straight line

(uniaxial deformation) and broken line (isotropic

deformation) in Fig. 6.

4.4. Open systems

Strictly speaking, DmðxÞ determined above is not the

exact chemical potential, because it is computed in the

closed systems. Thermodynamically, it should be

determined in open systems in which elements are

exchanged with an external bath. In principle, simu-

lation of the open system is done as follows. After

deforming the system to V, it is equilibrated by

element-exchange reaction with an external bath of

chemical potential m; the exact chemical potential is

given by such m that makes the average volume fraction

of the elements, �f; equal to the prescribed value, f ¼

0:5: This method, however, takes much computational

time and is difficult to perform by the computers used

in this work. The difference between the open and

Fig. 6. Chemical potential bDmðxÞ of chain-elements plotted against

condensation ratio x of LKs.

Table 2

Results for isotropic and uniaxial deformation

Cell size x pa pr bDm

Isotropic deformation

80 £ 80 £ 80 0.512 0.1091 0.2996 0.0179

64 £ 64 £ 64 1 0.1092 0.2944 0

52 £ 52 £ 52 1.864 0.1092 0.2807 20.0472

44 £ 44 £ 44 3.08 0.1091 0.2517 20.1556

40 £ 40 £ 40 4.10 0.1087 0.2206 20.2883

36 £ 36 £ 36 5.62 0.1083 0.1675 20.5554

Uniaxial deformation

64 £ 64 £ 64 1 0.1092 0.2945 0

32 £ 64 £ 64 2 0.1092 0.2765 20.0636

20 £ 64 £ 64 3.2 0.1090 0.2376 20.2135

16 £ 64 £ 64 4 0.1086 0.2008 20.3778

13 £ 64 £ 64 4.92 0.1080 0.1510 20.6564

Average over the forward and reverse deformation of sample S1 and the

forward deformation of sample S2.
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closed system is that, in the former, f is fluctuating

around 0.5, while in the latter, it is exactly fixed to 0.5.

Since the fluctuation of f is of the order of 1=
ffiffiffi
N

p
; N,

the total number of elements in the system, the

difference must be much smaller than the statistical

errors in the present simulations. To see the difference

between the closed and open systems, the closed system

for which mðxÞ has been already determined as shown

in Table 2 is further equilibrated by element-exchange

reaction with an external bath of the same chemical

potential, mðxÞ: By this element-exchange reaction, f

fluctuates but its time-average �f was almost equal to

the prescribed value, 0.5, and the width of concen-

tration-fluctuation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðf= �f2 1Þ2l

p
was very small as

shown in Table 3. This result suggests that mðxÞ

computed in the closed system (Table 2) must be very

close to its exact values in the open system.

4.5. Total free energy change of the system DFðxÞ

It is given by

bDFðxÞ ¼
ðN

N0

DmðN0=N 0ÞdN 0

¼
323x21 2 464 þ 180 ln xþ 137xþ 3:15x2 ðisotropicÞ;

445x21 2 462 þ 414 ln x2 22:4xþ 39:6x2 ðuniaxialÞ;

(

ð12Þ

where N0 is the total number of elements in the initial

conformation ðN0 ¼ 16; 384Þ: Pictures of bDFðxÞ are shown

in Fig. 7 (bold straight and dotted lines).

5. Comparison with the slip-link model

To study the surface melting phenomena in stacking

lamellar crystals, Riger and Mansfield (RM) [11,12]

computed DFðxÞ using the SL model [17]. In this model,

entanglements are represented by small links (slip-links),

which move smoothly but cannot pass one another along the

chains (Fig. 8). SL model may look like LK model, but there

is an important difference between them. In LK model,

strong repulsive forces act among LKs but they are absent in

SL model. If DFðxÞ comes mainly from the topological

repulsive potentials among LKs, as we assume, there must

be a large difference between DFðxÞ computed in this

simulation and that predicted by SL model. This is therefore

a good test for the topological repulsive potentials among

LKs.

Following RM [11,12] we assume that the system is

composed of ns ¼ N0=Ne strands of length Li ði ¼

1; 2;…; nsÞ and its free energy is given by

bFSLMðLÞ ¼
3

2

Xns

i¼1

ðln Li þ l2
i =Lia

2Þ; ð13Þ

where li ¼ ðlix; liy; lizÞ is the end-to-end vector of strand i and

L ¼ ðlx; ly; lzÞ is the extension ratio of the system. Eq. (13)

is a natural extension of Eq. (1). In the present system, ns is

Table 3
�f and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðf= �f2 1Þ2l

q
for isotropic deformations in open systems

x bm �f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðf= �f2 1Þ2l

q

5.62 0.4363 0.50052 0.00386

4.10 0.7084 0.50070 0.00356

3.08 0.8361 0.50050 0.00318

1.86 0.9445 0.50048 0.00256

1.00 0.9917 0.50036 0.00191

0.51 1.0096 0.50054 0.00137

Average over the forward and reverse deformation in the closed systems

of sample S1.

Fig. 8. SL model.

Fig. 7. Total free energy of the system bDFðxÞ plotted against condensation

x of LKs. Thin lines represent bDFSLMðxÞ computed by the SL model.

K. Iwata et al. / Polymer 43 (2002) 6595–6607 6601



estimated to be 148 using Ne ¼ 89 determined previously

for BF model at f ¼ 0:5 [19]. When the system is in

equilibrium with a linear chain melt, the average of l2i =Lia
2

over the strands is equal to kðl0i Þ2=L0
i a2l ¼ 1; where L0

i and l0i
are Li and li in the equilibrium melt. By deformation to

L ¼ ðlx; ly; lzÞ with f ¼ 0:5 fixed, slip-links are con-

densed to concentration ratio xð¼ N0=N ¼ 1=lxlylzÞ:
Following RM [11,12], it is assumed that Li changes

linearly proportional to the total number of elements, N, and

lij ðj ¼ x; y; zÞ changes affinely as

Li ¼ L0
i =x and lij ¼ l0ijlj: ð14Þ

For isotropic deformation L ¼ ðx21=3; x21=3; x21=3Þ and

uniaxial deformation L ¼ ðx21; 1; 1Þ; Eq. (13) gives the free

energy relative to its equilibrium melt value

bDFSLMðxÞ

¼
3ns

2

x1=3 2 1 2 ln x ðisotropicÞ;

2x=3 þ 1=3x2 1 2 ln x ðuniaxialÞ:

8<
: ð15Þ

Uniaxial case in Eq. (15) has been derived by RM [11,12].

DFðxÞ and DFSLMðxÞ are compared in Fig. 7. Generally

speaking, DFSLMðxÞ is much smaller than DFðxÞ: Particu-

larly for the isotropic condensation ðx . 1Þ; DFðxÞ

increases rapidly while DFSLMðxÞ decreases with increasing

x; thus, SL model cannot describe the change due to the

isotropic condensation. In the uniaxial condensation, on the

other hand, DFSLMðxÞ changes considerably and increases

with increasing x above x . 1:6; thus DFSLMðxÞ should

give a part of DFðxÞ; although the most part of DFðxÞ should

come from the topological repulsive potential among LKs.

It is remarkable that, although the magnitudes of DFðxÞ and

DFSLMðxÞ are quite different, the difference between the

isotropic and uniaxial condensation of DFðxÞ is roughly

reproduced by DFSLMðxÞ (Fig. 7). This suggests that the

difference between the isotropic and uniaxial condensation

comes from a SL-model-like deformation of the chains.

To see this, we next consider conformational change of

chains due to the macroscopic deformation of the system. It

is represented by ‘average extension ratio of the effective

bond aj; j ¼ x; y; z’ defined by

a2
j ¼ kl2i;j=a2Lil or 12k½R2

g�a;j=�b
2Lal; j ¼ x; y; z; ð16Þ

where �b; the effective bond length of BF model, ½R2
g�a;j; the

j-component of R2
g of ring chain a (in the catena network)

and k l represents the average over the time and chain a or

strand i (in SL model). For SL model, they are given in the

approximation, Eq. (14), by

a2
jðxÞ ¼ x1=3 for j ¼ x; y; z ðisotropicÞ: ð17Þ

a2
jðxÞ ¼

x21 for j ¼ x

x for j ¼ y; z

( )
ðuniaxialÞ: ð170Þ

With use of a2ðxÞ ¼ a2
xðxÞ þ a2

yðxÞ þ a2
z ðxÞ; Eq. (15) is

rewritten by

bDFSLMðxÞ ¼
3ns

2
½a2ðxÞ=3 2 1 2 ln x�; ð18Þ

both for the isotropic and uniaxial deformation. In Fig. 9,

a2
jðxÞ determined by the simulation (shown by symbols) are

compared with Eqs. (17) and (170) (shown by lines); for the

isotropic deformation, a2ðxÞ=3 is plotted. As seen from

Fig. 9, Eqs. (17) and (170) give reasonable agreement with

the simulation results, although they are overestimated

considerably. Overestimation may be due to approximat

Eq. (14), which restricts free rearrangement of the slip-links

in the space and along the chains to minimize DFSLMðxÞ

under a given macroscopic condition; therefore, DFSLMðxÞ

given by Eqs. (17) and (170) must also be overestimated.

This may be the reason why the difference of DFSLMðxÞ

between the uniaxial and isotropic deformation is a little

larger than that of DFðxÞ as shown in Fig. 7.

Since the conformational changes represented by a2
jðxÞ

occur really and they are well described by SL model,

DFSLMðxÞ must be a part of DFðxÞ: However, there are large

differences between DFðxÞ and DFSLMðxÞ; as shown in

Fig. 7, so that the main part of DFðxÞ should come from the

topological repulsive potential among LKs. Since the

topological repulsive potentials act along chains, they are

insensitive to geometrical differences of macroscopic

deformations (say, uniaxial or isotropic), which are

approximately represented by SL model. Although

DFSLMðxÞ is a part of DFðxÞ; it is only a small correction

term. RM studied the surface melting phenomena of lamella

using SL model [11,12] but their work is insufficient

because DFSLMðxÞ is just a small part of DFðxÞ: This

problem will be studied using DFðxÞ in the next paper [6].

Fig. 9. Change of R2
g due to macroscopic deformation of the system,

a2
aðxÞ ¼ k12½R2

g�a;a=Lal; a ¼ x; y; z:
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6. Determination and classification of Local-knots in the

system

6.1. Average chain-length �LaðxÞ

Another evidence for the repulsive potential among LKs

is found in average chain-length �LaðxÞ; a ¼ 1; 2;…;Np: Due

to the element-exchange reaction, La changes and the

system becomes polydisperse. This is what really occurs in

amorphous domains of semi-crystalline polymers. In the

topological equilibrium state, �L0
a½¼ �Lað1Þ� takes a value

between 347 and 659 as shown in Table 5 (sample S3 is

used). At each condensation ratio x, �LaðxÞ is plotted against
�L0

a in Fig. 10. As seen from the figure, �LaðxÞ forms straight

lines of slop 1/x (within 0.3% of error) passing the origin;

this means that �LaðxÞ is inversely proportional to x in all the

chains. To explain this result, it is natural to assume that a

strong repulsive force is acting among LKs; i.e. to make the

total repulsion energy minimum, LKs should distribute with

an equal intervals along the chains. This means that �LaðxÞ

should be linearly proportional to number ma of LKs trapped

in each chain. To confirm this, we next compute ma using

the method presented in the previous work [4].

6.2. Number ma of LKs trapped in each chain

Let Iðsa; sbÞ be a local Gauss integral in regard to stem

Cðsa; sa þ nÞ and Cðsb; sb þ nÞ; the former composed of nþ

1 elements from sa to sa þ n of chain a and the latter, of

nþ 1 elements from sb to sb þ n of chain b

Iðsa; sbÞ ¼
1

4p

ðsaþn

sa

ðsbþn

sb

	
ð_raðsÞ £ _rbðs

0ÞÞ·ðraðsÞ2 rbðs
0ÞÞ

lraðsÞ2 rbðs
0Þl3

ds ds0; ð19Þ

where raðsÞ; rbðs
0Þ; _raðsÞ and _rbðs

0Þ are coordinates and

tangent vectors along chain a and b [21]. Length of the

stems, n, should be near the entanglement spacing, Ne.

Considering Ne ¼ 89 of BF model ðf ¼ 0:5Þ found in the

previous work [19], n ¼ 100 is assumed in this work (see

Appendix A). When stem Cðsa; sa þ nÞ and Cðsb; sb þ nÞ

form a LK as shown in Fig. 1, Iðsa; sbÞ takes near integer

values, ^1;^2;… To find LKs formed between chain a and

b, local maximums of lIðsa; sbÞl are searched for, sweeping

sa and sb along the chains. When local maximums exceed

certain positive number I0 (I0 ¼ 0:3 assumed in this work),

they are recorded in a LK-candidate list. Since I0 is much

smaller than unity, the list contains many temporary

fluctuations of Iðsa; sbÞ; which are not true LKs. To remove

temporary fluctuations from the list, time evolution of the

local maximums is traced for a sufficiently long time by the

Brownian motion with the local motions alone. Tracing is

continued for 25 Mut (mega unit times), during which

period the mean-square displacement of LKs along the

chains reaches ca. 20,000 [element2] or LKs move ca. 1.6 Ne

elements as an average. If local maximums of Iðsa; sb) are

temporary fluctuations, their lIðsa; sbÞl go rapidly below I0

and they are removed from the LK-candidate list. After

continuing this process for a sufficiently long time, only true

LKs remain in the list. This operation is called ‘a full-

search-and-tracing (fs&t) of LKs’.

The time-evolution of the number of local maximums,

Nl maxðtÞ; is shown in Fig. 11, where Nl maxðtÞ is the average

of samples S1 and S2. Following the method used in the

previous work [4], Nl maxðtÞ is decomposed into three

exponentially decaying terms, NðiÞ
l max expð2t=tðiÞl maxÞ; i ¼

1; 2; 3; where NðiÞ
l max and t

ðiÞ
l max are strengths and life times of

the modes. NðiÞ
l max and t

ðiÞ
l max determined by the least-mean-

square-fitting method are given in Table 4. Following the

arguments in the previous work [4], the shortest-living term

M1 is assigned to the temporary fluctuations of Iðsa; sbÞ; the

second term M2, which have considerably long life time

t
ð2Þ
l max ¼ 4:64 Mut; to the temporary LKs and the longest

living mode M3 ðt
ð3Þ
l max ¼ 51:5 MutÞ; to the true LKs. The

true LKs correspond to the LKs, which contribute to the

Fig. 10. Average length �LaðxÞ of chains að¼ 1; 2;…Þ plotted against their

topological equilibrium values �L0
a: For x ¼ 0:512; �LaðxÞ is divided by three

in the figure. These data can be fitted by straight lines passing the origin and

their slops are equal to 1/x within 0.3% of error.

Table 4

Decomposition of Nl maxðtÞ into three exponentially decaying modes

Mode NðiÞ
l max t

ðiÞ
l max (Mut)

M1 460 0.37

M2 206 4.64

M3 296 51.5
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repulsive potential considered here. The total number of the

true LKs in the system is estimated to be NLK ¼ Nð3Þ
l max=2 ¼

148 or each chain contains 9.3 LKs as an average. The

average chain length per LKs is estimated to be nLK ¼ 55;
which is close to ‘the average chain length per entwining

ring’, Np
e ¼ 59; found in the previous work [17]. Further

discussions on the nature of LKs and the dissipation

mechanism of Nl maxðtÞ should be referred to Refs. [4,5].

Although true LKs have an essentially infinite lifetime,

they are lost gradually in the tracing process. Dissipation of

the true LKs occurs because Iðsa; sbÞ is not a true topological

invariant; although their Iðsa; sbÞ stays most time near ^1

(or near ^2 in rare cases), it is not an exact constant of

motion and, in the long tracing process, lIðsa; sbÞl fluctuates

below I0 and removed from the LK-candidate list. In the

previous papers [5], it is argued that LKs behave like

quantum mechanical particles and a kind of ‘uncertainty

principle’ acts between their size n and position s along the

chains. Since n is fixed, a very large fluctuation of s occurs

in a long tracing process and our program loses sight of LKs

(this phenomenon is called the ‘probe fluctuation of LKs’)

[4–5]. Even if true LKs are lost in a process, they are found

again by repeating fs&t in other periods. To cover the defect

of the tracing program, fs&t is repeated five times with

5 Mut intervals. Since LKs are characterized by (1) their

parent chains, (2) their signs and magnitudes of Iðsa; sbÞ and

(3) their orders along the chains, LKs found in different fs&t

are identified easily by these characteristic parameters. In

counting LKs, relative position maps of LKs along the

chains shown in Fig. 12 are used. In the maps, 32 chains

existing in the system are designated by letters, ‘0’–‘9’ and

‘A’–‘X’ (‘I’ and ‘O’ are omitted) and positions of LK, say

that formed between chain A and B, are shown by letter ‘B’

in the LK-maps (lines of letters in the figure) of chain A and

letter ‘A’, in those of chain B; in the maps, each letter

occupies ca. 6.6 elements length along the chains; the five

lines assigned for each chain show the average positions of

LKs in the five fs&t periods. In Fig. 12, LK-maps of initial

eight chains, 0–7, are shown as examples. The letters on the

left end of lines (LK-maps) represent the standard LK for

calculating the relative positions of LKs; in chain 0, for

example, the standard LK is that formed between chain 0

and M, thus ‘M’ is printed on the left end of the line. In

Fig. 12, local maximums of lIðsa; sbÞl survived longer than

3 Mut in each fs&t are shown. In this work, such LKs that

appear at least in three of the five LK-maps of each chain are

counted as true LKs; number ma of true LKs thus found is

given on the third column of Table 5. The total number of

true LKs found by this method is equal to NLK ¼ 149; which

agrees well with NLK ¼ 148 determined from the dissipa-

tion behavior of Nl maxðtÞ: Considering dissipation time

t
ð3Þ
l max ¼ 51:6 Mut of mode M3, 5.6% of true LKs are lost in

3 Mut or the probability for them to be lost simultaneously

in two of the five fs&t is essentially zero (0.2%); thus ma

Table 5

Average length �L0
a and effective number ma of LKs trapped in each chain

(sample 1)

Chain �L0
a ma

1 571 11

2 473 7

3 576 7

4 404 10

5 473 8

6 517 10

7 693 13

8 471 13

9 493 10

10 450 8

11 597 9

12 450 12

13 639 9

14 710 13

15 526 6

16 304 5

17 620 14

18 575 10

19 560 12

20 463 8

21 370 5

22 620 13

23 448 9

24 454 8

25 348 6

26 655 10

27 562 12

28 354 6

29 417 7

30 588 11

31 386 7

32 611 9

Total 298

Fig. 11. Time evolution of number Nl maxðtÞ of local maximums of

lIðsa; sbÞl: (average of sample 1 and 2).
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given in Table 5 should contain almost all true LKs existing

in the system. However, considering life time t
ð2Þ
l max ¼ 4:64

Mut of the temporary LKs, ca. 4% of them must survive

simultaneously in three fs&t; thus, Table 5 should contain

ca. 3% of temporary LKs but this is within the error of the

present calculations.

6.3. Relationship between ma and �L0
a

According to the above argument, �L0
a should be linearly

proportional to ma. To see this, �L0
a is plotted against ma,

a ¼ 0; 1;…Np; in Fig. 13. As seen from the figure, �L0
a is

roughly proportional to ma as expected, but the points are

scattering widely from a linear line. Several reasons may be

considered for this discrepancy. First, there are many kinds

of LKs, such as shown in Fig. 14, which contribute

differently to �L0
a: In Fig. 14, LKs formed by n stems are

designated as LKn; LK2 is further classified into LK2,i, i ¼

1; 2;…; according to the value of lIðsa; sbÞl (Fig. 14 A1 and

A2). Complex LKnðn $ 3Þ are found in the LK-maps. In

Fig. 12, for example, three LK3 (‘7S’ in chain 5, ‘OR’ in

chain 6 and ‘R8’ or ‘8R’ in chain 7) appear, in which two

stems move synchronizing and overlapping with one

another; although their synchronized motions are not so

evident in the low-resolution map shown in Fig. 12, they are

clearly observed in higher-resolution (in the position and

time) maps, which are used to study the fine motions of LKs.

Among the true LKs found, ca. 90% are of the simplest type,

LK2,1, and only a small number of complex LKs, such as

LK2,2, LK3 and LK4, are found; more complex LK2,i (i $ 3)

or LKn (n $ 5) are not found. For simple LK2 (LK2,i,

i ¼ 1; 2;…), their orders along the chains are conserved;

Fig. 13. Average chain-length �L0
a in the topological equilibrium state plotted

against number ma of LKs trapped in each chain a.

Fig. 14. Classification of local-knots.

Fig. 12. LK-maps of initial eight chains, a ¼ 0; 1;…; 7:
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when observed in the higher-resolution maps, their orders

are sometimes disturbed but return rapidly to the original

orders. In complex LKn (n $ 3), on the other hand, stems

forming them overlap with one another and their orders

along the chain are changing ceaselessly (when observed in

the higher-resolution maps), so that they must form a

complex LK as shown in Fig. 14B and C. However, the

orders of all LKs along the chains are conserved, if the stems

forming a complex LK are considered as a group. Volume

of LKs occupying in the chains must changes with their

complexities and, for simple LK2s (A1 and A2 in Fig. 14),

their volume must depend on their entwining number. In the

present method, ma gives such an effective number of LKs

in which all the local maximums of lIðsa; sbÞl survived for

the indicated period are counted as true LKs with equal

weight; this corresponds to count LK of type LKn with

weight n 2 1 and the difference between the entwining

number in LK2 is neglected. Fig. 13 shows the relationship

between �L0
a and ma in this particular choice of the weight

factors. However, the volume difference of LKs is not the

main reason for the large scattering of the points in Fig. 13,

because 90% of LKs are of the simplest type, LK2,1, and

mere change of their weights did not improve much the

results.

The main reason for the discrepancy is that there are

many voids in the LK-maps. In Fig. 12, two large voids

appear between ‘C’ and ‘M’ in chain 2 and on the left side

of ‘7S’ in chain 5; smaller voids appear frequently,

say, between ‘D’ and ‘P’ and between ‘C’ and ‘D’ in

chain 0, between ‘Q’ and ‘2’ in chain 1, between ‘1’ and ‘C’

and between ‘6’ and ‘W’ in chain 2, and so on. In these

voids, there must be invisible LKs, which cannot be

detected by the present tracing program using the Gauss

integral. An example of such invisible LKs is shown in

Fig. 14D, in which the Gauss integral gives almost zero for

any pair of the three stems forming them, although they are

evidently entangling with one another (14D is known as the

Boolean link). It is well known in the topology of links that

the Gauss integral cannot classify sufficiently complex

links. To study the invisible LKs, higher topological

invariants such as Alexander’s polynomials must be used.

Single-stem-knot LK1s (or, simply, ‘knots’ in the legal

terminology of topologists) shown in Fig. 14E are also

invisible by the Gauss integral. LK1s must appear frequently

in the chains but they are qualitatively different from other

LKn ðn $ 2Þ from the following points: (1) they can pass

through one another as well as through LKns ðn $ 2Þ and,

(2) from this reason, the topological repulsion among LK1s

and between LK1 and LKn ðn $ 2Þ might be much weaker

than that among LKns ðn $ 2Þ: Study of these invisible LKs

and single-stem-knot LK1 is a matter of future works.

6.4. Validity of LK model

Although there remain these problems, the invisible LKs

occupy only ca. 20% of the LK-maps or ca. 80% of LKs (in

the volume fraction) are found in the present method;

particularly, ca. 70% of LKs are the simplest LK2 (A1 in Fig.

14). We cannot observe the invisible LKs directly, but we

can trace their motions indirectly by the motion of the voids,

thus, can know the motion of all the LKs in the system.

Therefore, we may conclude that the validity of LK model

are probed sufficiently by the previous [4,5] and present

simulations. Although there are differences among LKs in

their volume occupying along the chains, in their strength of

the topological repulsive potentials and in their mobility

along the chain, this does not change the essential features

of LK model. The wide scattering of the points from the

linear relationship between �L0
a and ma in Fig. 12 is explained

by the existence of the invisible LKs; even if the all invisible

LKs are included, an exact linear relationship between �L0
a

and ma may not be expected because there is the difference

in the volume of LKs. The constant relationship of �LaðxÞ= �L
0
a

shown in Fig. 11 and the origin of DmðxÞ and DFðxÞ are well

explained by LKs, whether they are visible or not or whether

they are large or small in volume and strength of the

interaction potentials. In the previous works [4,5], mað¼

�nLK in the previous notation) is estimated from the ratio of

diffusion coefficient DLK of the collective motion (reptation

motion) of LKs to diffusion coefficient D0
LK of single LK

along a chain, assuming that all LKs have the same D0
LK;

actually, ma determined in the previous work [4,5] gives an

effective number of LKs, in which all LKs are converted

into the simplest LK2,1. Although there are many kinds of

LKs, which contribute differently to �L0
a; DmðxÞ and DLK

(even weight of LKs may be different in these quantities),

there is no essential difference between the simplest LK2,1

and other more complex LKs, except for single-stem-knot

LK1 which can pass through themselves as well as other

LKn, n $ 2: LK model should be modified to include the

differences among LKs, but it will give no large effect on the

final results, because 70% (in the volume fraction) of LKs

are the simplest LK2,1. It is also reasonable to imagine that

entangled polymer chains are composed mostly of LK2,1 as

shown in Fig. 1.

7. Concluding remarks

In this work, we have studied the motion of LKs in detail

and found further evidences for the strong repulsive

interaction among LKs. (1) Large deviations are found

between DFðxÞ computed in this work and DFSLMðxÞ

predicted by the SL model in which the repulsive potentials

among LKs are neglected; DFSLMðxÞ should contribute

partly to DFðxÞ; but the most part of it must come form the

repulsive potential among LKs. (2) It is found that average

chain length �LaðxÞ is inversely proportional to condensation

ratio x and roughly proportional to number ma of LKs

trapped in each chain; these results also suggest the

existence of strong repulsive forces acting among LKs

along the chains. The most important feature of LK model is

K. Iwata et al. / Polymer 43 (2002) 6595–66076606



that entanglement is composed of particles (LKs), which are

countable and interacting with one another by repulsive

forces along the chains. In this point, LK model is quite

different from the usual tube model [14], which is

considered as the standard model of entanglement. It will

be shown in the next paper [6] that chemical potential

change DmðxÞ due to condensation of entanglement play a

central role in the crystallization problems of polymers. The

particle nature of entanglement is the key to this problem;

this is clearly seen in the step reaction (see figs. 10 and 11 of

the next paper [6]) in which LKs trapped in an amorphous

section of a chain are condensed as the crystallization

proceeds. Such a model is possible only when entanglement

is considered to be composed of particles (LKs).

Finally, it must be stressed that, although we have spend

a lot of space discussing the nature of LK model, DmðxÞ

given by Eq. (11) is determined independent of LK model,

since the simulation model and Eq. (4) used in the

calculation of DmðxÞ are independent of LK model. In this

meaning, Eq. (11) is empirical equation. These equations

are applied to crystalline polymers in the next paper [6].
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Appendix A

Following the method of the previous work [4], we

actually used in the calculation a modified local Gauss

integral

Imðsa; sbÞ ¼
Xn
j¼1

Xn
j0¼1

sinðjp=nÞsinðj0p=nÞusaþj;sbþj0 ;

where ui;j is a Gauss integral in regard to bond bi of chain a

and bond bj of chain b

ui;j ¼
1

4p

ði

i21

ðj

j21

ð_raðsÞ £ _rbðs
0ÞÞ·ðraðsÞ2 rbðs

0ÞÞ

lraðsÞ2 rbðs
0Þl3

ds ds0:

Iðsa; sbÞ and Imðsa; sbÞ have almost the same nature but the

latter moves more smoothly than the former so that the

prove fluctuation of Imðsa; sbÞ is depressed a little, this

makes tracing of Imðsa; sbÞ more easy. For Imðsa; sbÞ; stem

length n should be considerably larger than Ne, so that n ¼

100 is used in the present work (compare it with Ne ¼ 89).

In the previous work [4], n is changed widely but the results

are the same, except that extremely small or large n makes

the dissipation rate of LKs increase and difficult to trace

them for a long period. n ¼ 100 chosen here is near the most

suitable value for tracing. In the text, Iðsa; sbÞ is used for the

sake of simplicity but, strictly, it should be reread by

Imðsa; sbÞ:
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